Search results for " mouse mesoangioblast"

showing 5 items of 5 documents

Mouse mesoangioblast behaviour when subjected to cellular stress

2009

cellular stress stem cells mouse mesoangioblastsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangio…

2010

Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblast…

ProteomicsTime FactorsPhysiologyClinical BiochemistryBiologyFibroblast growth factorCell LineMiceMembrane MicrodomainsTubulinParacrine CommunicationmedicineExtracellularAnimalsSecretionSettore BIO/06 - Anatomia Comparata E CitologiaFibroblastCytoskeletonMembrane vesicles MMP9 FGF2 mouse mesoangioblastMesoangioblastSecretory VesiclesVesicleBiological TransportMesenchymal Stem CellsCell BiologyCell biologyOxygenmedicine.anatomical_structureMatrix Metalloproteinase 9Cell cultureFibroblast Growth Factor 2Stem cellExtracellular Space
researchProduct

Paracrine roles of extracellular vesicles released by mouse mesoangioblasts

2017

Extracellular vesicles (EV) represent an important mediator of cell-to-cell communication and are involved in both autocrine and paracrine signaling, with a critical role in a number of physiological and pathological conditions.1 The bioactive molecules contained within EV simultaneously activate several different pathways resulting in the synergistic stimulation of target cells. The discovery and characterization of EV have added a novel understanding to regenerative medicine, namely the finding that stem cells are an abundant source of EV.1-2 A6 mouse mesoangioblasts, vessel-associated multipotent progenitor stem cells that are capable of differentiating into different mesodermal cell typ…

extracellular vesicles mouse mesoangioblasts stem cellsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Intracellular and extracellular Hsp70 in mouse mesoangioblast stem cells

2008

Hsp70 mouse mesoangioblast stem cell
researchProduct

Stress response in mesoangioblast stem cells

2006

Stem cells are presumed to survive various stresses, since they are recruited to areas of tissue damage and regeneration, where inflammatory cytokines and cytotoxic cells may result in severe cell injury. We explored the ability of mesoangioblasts to respond to different cell stresses such as heat, heavy metals and osmotic stress, by analyzing heat shock protein (HSP)70 synthesis as a stress indicator. We found that the A6 mesoangioblast stem cells constitutively synthesize HSP70 in a heat shock transcription factor (HSF)-independent way. However, A6 respond to heat shock and cadmium treatment by synthesizing HSP70 over the constitutive expression and this synthesis is HSF1 dependent. The e…

Chloramphenicol O-AcetyltransferaseHot TemperatureOsmotic shockRecombinant Fusion ProteinsBlotting WesternHypertonic SolutionsElectrophoretic Mobility Shift AssayBiologyResponse ElementsTransfectionMesodermMiceSTRESS RESPONSE STEM CELLS MOUSE MESOANGIOBLASTS.Heat Shock Transcription FactorsHeat shock proteinMetals HeavyAnimalsRNA MessengerHSF1Promoter Regions GeneticMolecular BiologyCells CulturedMesoangioblastHSC70 Heat-Shock ProteinsCell BiologyTransfectionHematopoietic Stem CellsMolecular biologyCell biologyHsp70Heat shock factorDNA-Binding ProteinsGene Expression RegulationStem cellTranscription Factors
researchProduct